报告编号:20250926HT02GHG

产品碳足迹核查报告

产品名称:砂浆

产品规格型号: _/

查询网站: www.cncsit.cn

机构名称(公章)

工信国际检测认证有限公司

报告签发日期: 2025年9月26日

企业名称	企业名称 公司		冠县梁堂乡北寺地
法定代表人	法定代表人 梁振		0635-5555666
授权人(联系人) 田经理		联系方式	0635-5555666
核算和报告依据		温室气体排放评价规范	14067:2018《温室气体

企业概况:

冠县恒泰建设有限公司创立于 2007 年 09 月 06 日, 经营范围: 预挫砂浆、水泥砂浆、建材制品生产、销售。((依法须经批准的项目, 经相关部门批准后方可开展经营活动)。

1.评价标准中所要求的内容已在本次工作中覆盖

确认此次产品碳足迹报告符合:

PAS 2050:2011《商品和服务在生命周期内的温室气体排放评价规范》

GB/T 24067-2024/ISO 14067:2018《温室气体产品碳足迹 量化要求和指南》;

2.单位产品碳足迹结果

产品功能单位	单位产品碳排放量 (kgCO ₂ eq)	
1吨砂浆	93.27	

系统边界"摇篮到坟墓":原料获取及加工、运输、生产制造、仓储、成品运输阶段、产品处置阶段的碳排放

3.评价过程中需要特别说明的问题描述

- (1) 本次产品碳足迹评价的系统边界为包括原辅料获取阶段、原辅料运输阶段、产品生产阶段、成品运输阶段、产品处置阶段。
 - (2) 本次产品碳足迹评价工作建立了产品生命周期模型, 计算得到产品碳足迹结果。

编制	王丹丹	签名	411
		组内职务	
组长	王丹丹	签名	411
组员	冯玉茹		马玉靴

目 录

摘要	1
1产品碳足迹 (CFP) 介绍	2
2 企业及产品介绍	3
2.1 企业介绍	3
2.2 厂区布局	4
2.3 产品介绍	4
2.3.1 砂浆产品功能	5
2.3.2 产品工艺流程	5
2.3.3 产品图片	6
3 目标与范围定义	7
3.1 评价目的	7
3.2 评价范围	7
3.2.1 功能单位	7
3.2.2 系统边界	7
3.2.3 分配原则	8
3.2.4 取舍准则	9
3.2.5 相关假设和限制	9
3.2.6 影响类型和评价方法	9
3.2.7 数据来源	9
3.2.8 数据质量要求	9
4 数据收集	11
4.1 数据收集说明	11
4.2 活动水平数据	11
4.3 排放因子数据	12
5 碳足迹计算	13
5.1 计算方法	13
5.2 计算结果	13

	5.3 不确	定性分析	· 14
6改注	进建议		- 15
	6.1 改进	建议	15
附件			- 16
	附件1:	本公司 2024 年度温室气体报告核查组专家名单	-16
	附件 2:	企业营业执照	. 17
	附件3:	能源计量器具配置表	- 18
	附件 4:	能源统计表	19
	附件 5:	高耗能设备统计表	20

摘要

本评价的目的是以生命周期评价方法为基础,采用 PAS 2050:2011《商品和服务在生命周期内的温室气体排放评价规范》;

GB/T 24067-2024/ISO 14067:2018《温室气体产品碳足迹 量化要求和指南》 为标准,计算得到砂浆产品的碳足迹。

为了满足碳足迹第三方认证以及与各相关方沟通的需求,本评价的功能单位 定义为: 1吨砂浆。评价的系统边界定义为全生命周期产品碳足迹,系统边界为原 辅料获取阶段、原辅料运输阶段、产品生产阶段、成品运输阶段、产品处置阶 段。由于本产品为中间产品,非最终产品无法识别产品处置阶段。

评价得到: 砂浆"原辅料获取阶段、原辅料运输阶段、产品生产阶段、成品运输阶段、产品处置阶段"的碳足迹值为 93.27 kgCO₂ eq,原辅料获取阶段 碳排放为 86.6250 kgCO₂ eq(92.88%),原辅料运输阶段碳排放为 3.6686 kgCO₂ eq(3.93%),生产阶段碳排放为 0.8950 kg CO₂ eq(0.96%),成品运输 阶段 2.0805 kgCO₂ eq(2.23%),产品处置阶段 0 kgCO₂ eq(0%)。

评价过程中,数据质量被认为是最重要的考虑因素之一。本次数据收集和选择的指导原则是:数据尽可能具有代表性,主要体现在生产商、技术、地域、时间等方面。本报告采用了企业的合格供应商环评报告,同行业环保报告,企业的实际数据建立了产品生命周期模型,并计算得到产品碳足迹结果。生命周期评价的主要活动水平数据来源于企业现场调研的初级数据,背景数据来自发改委发布的《工业其他行业企业温室气体核算方法与报告指南(试行)》、《中国水泥生产企业温室气体排放核算方法与报告指南(试行)》、《陆上交通运输企业温室气体核算方法与报告指南(试行)》等规定的缺省值。

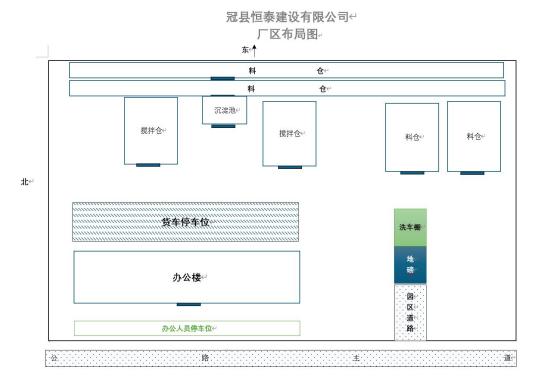
1产品碳足迹(CFP)介绍

近年来,温室效应、气候变化已成为全球关注的焦点,"碳足迹"也越来越广泛地为全世界所使用。碳足迹通常分为项目层面、组织层面、产品层面这三个层面。产品碳足迹(Carbon Footprint of a Product, CFP)是指衡量某个产品在其生命周期各阶段的温室气体排放量总和,即从原辅材料获取、原辅材料运输、产品生产、产品运输、产品使用、废弃处置等阶段等多个阶段的各种温室气体排放的累加。温室气体包括二氧化碳(CO₂)、甲烷(CH₄)、氧化亚氮(N₂O)、氢氟碳化物(HFC)和全氟化碳(PFC)等。碳足迹的计算结果用二氧化碳当量(CO₂eq)表示。全球变暖潜值(Global Warming Potential,简称GWP),即各种温室气体的二氧化碳当量值,通常采用联合国政府间气候变化专家委员会(IPCC)提供的值,目前这套因子(特征化因子)在全球范围广泛适用。

产品碳足迹计算只包含一个完整生命周期评估(LCA)的温室气体的部分。基于 LCA 的评价方法,国际上已建立起多种碳足迹评估指南和要求,用于产品碳足迹认证,目前广泛使用的碳足迹评估标准有三种: (1)《PAS2050:2011商品和服务在生命周期内的温室气体排放评价规范》,此标准是由英国标准协会(BSI)与碳信托公司(CarbonTrust)、英国食品和乡村事务部(Defra)联合发布,是国际上最早的、具有具体计算方法的标准,也是目前使用较多的产品碳足迹评价标准; (2)《温室气体核算体系:产品寿命周期核算与报告标准》,此标准是由世界资源研究所(World Resources Institute,简称 WRI)和世界可持续发展工商理事会(World Business Council for Sustainable Development,简称 WBCSD)发布的产品和供应链标准;(3)GB/T 24067-2024/ISO 14067:2018《温室气体产品碳足迹量化要求和指南》,此标准以 PAS2050 为种子文件,由国际标准化组织(ISO)编制发布。产品碳足迹核算标准的出现目的是建立一个一致的、国际间认可的评估产品碳足迹的方法。

2 企业及产品介绍

2.1 企业介绍


冠县恒泰建设有限公司是集生产、销售、运输为一体的环保型商砼生产销售企业,企业成立于2007年9月,于2009年获得企业生产资质,注册资金1000万元,占地面积近23000多平方米,综合办公楼1200多平方米,厂区按照环保型企业要求规划建设,固定资产达3000余万元,环保全封闭仓储车间近万平方米,拥有全封闭式180生产线2条,运输车18辆,能满足各类大型施工现场生产需要,现有高级工程师1名,工程师4名,拥有各类技术人员10多人。

冠县恒泰建设有限公司拥有先进的经营管理模式,建有现代化试验室,试验室各类专业仪器齐全,公司实行严格的质量内控保证体系,对原材料做到供应中监测,施工中监测,能够熟练完成生产所需要的全部试验项目及各种原材料的检验工作,为生产提供强有力的技术保障。

自冠县恒泰建设有限公司成立以来先后承建完成水韵新城小区、阳光花园小区、名仕花园小区、陶然居小区、嘉润公园小区、盛世豪庭小区、冠州印象小区、花留庄棚户区改造、名仕豪庭小区、静雅居小区、金和湾小区、广泽水映城小区、元庄家园棚户区改造、清泉一品小区、冠玉星湖湾小区、冠华国际购物中心、凤凰颐和绿洲、中心医院颐养院等大型重点工程及县建设工程大部分桩基砂浆、湿拌砂浆的供应,工程质量均获得优良,得到上级主管部门和建设施工方及社会各界的一致好评。

由冠县恒泰建设有限公司供应预拌砂浆的冠县花留庄棚户区改造 15#、16#楼、冠玉星湖湾小区 10#住宅楼、冠县新华康复医养院医护综合楼、清泉一品 22#楼等工程均获得"优质结构杯奖"。

2.2 厂区布局

厂区布局图

2.3 产品介绍

砂浆是砂浆是由胶凝材料(如水泥、石灰)、细骨料(砂子)和水按一定 比例拌和而成的混合材料。有时也会加入外加剂或掺合料来改善其性能。

它与混凝土的主要区别在于不含粗骨料(石子),因此质地更细腻,常用于需要精细操作的部位。

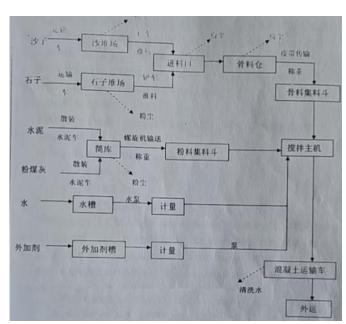
随着湿拌砂浆生产和应用技术的逐步成熟,湿拌砂浆的全面推广和应用已成为城市建筑业发展的新方向,对建筑业的技术进步和人居环境和谐发展具有深远意义。

对施工单位,与现场搅拌砂浆相比,湿拌砂浆可以免去施工企业原材料采购,运输、加工、实验室配比测试、现场搅拌生产质量控制等一系列过程,降低企业的运营成本。

对建设单位而言,湿拌砂浆能够缩短工期,还能降低建设成本,在保证湿拌砂浆质量的前提下,湿拌砂浆的施工厚度比现场搅拌砂浆小,一是可以减少砂浆的使用量减轻建筑自重,二是可以增加使用面积(0.5~1)。从而降低单位

面积建设投资资成本。由于湿拌砂浆是搅拌站空产,质量有保证,可以降低返工率,延长结构使用年限。

2.3.1 砂浆产品功能


品种丰富:可根据不同的技术要求开发相关产品,满足各种建筑应用需求。 质量稳定:工厂化生产,精准计量,均匀混合,避免人工配制差异造成的质量 波动和缺陷。

性能卓越: 经科学配置的产品,各项性能指标全面超越现场配置的砂浆, 决施工中常见的裂缝、剥落、空鼓等端,整体提升建筑工程质量,延长建筑使 用寿命,降低后期维护成本。易存易用:可通过泵送管道直达作业现场,配合 喷枪实施机械作业。

省工省料: 优越的施工性能,可降低工作强度和难度,显著提高施工效率, 高保水件的湿拌砂浆,可实现薄层施工,施工用料显著减少,落地灰少,可降 低材料损耗,并减少对工地的环境污染,有利于文明施工。高效降耗:适合采 机械化方法进行施工,可使施工效率达到传统施工效率的 4~12 倍,节约了工作 时间和劳动力,减少浪费,降低建设工程的综合成本。

2.3.2 产品工艺流程

采购原材料→原料检验→进库→计量投料→搅拌→测量检验→产品运输→ 顾客验收。

工艺流程图

2.3.3 产品图片

3目标与范围定义

3.1 评价目的

本评价的目的是根据 PAS 2050:2011《商品和服务在生命周期内的温室气体排放评价规范》;

GB/T 24067-2024/ISO 14067:2018《温室气体产品碳足迹 量化要求和指南》标准的要求,科学地评估砂浆的碳足迹。为企业自身的产品设计、物料采购、生产管控等提供可靠的碳排放信息,同时也为企业建立碳中和品牌,践行国家"绿色制造"战略等做好准备。评价的结果将为认证方、企业、产品设计师、采购商及消费者的有效沟通提供合适的方式。评价结果面向的沟通群体有:第三方认证机构,冠县恒泰建设有限公司内部的管理人员、生产管理人员、采购人员,以及企业的外部利益相关者,如原材料供应商、政府部门和环境非政府组织等。

评价获得的数据信息还可用于以下目的:

- (1) 产品生态设计/绿色设计
- (2) 同类产品对标
- (3) 绿色采购和供应链决策
- (4) 为实现产品"碳中和"提供数据依据

3.2 评价范围

本项目明确了评价对象的功能单位、系统边界、分配原则、取舍原则、相 关假设和原则、影响类型和评价方法、数据库和数据质量要求等,在下文分别 予以详细说明。

3.2.1 功能单位

为方便输入/输出的量化,以及后续企业披露产品的碳足迹信息,或将本评价结果与其他产品的环境影响做对比,本评价声明功能单位定义为:1吨砂浆、1吨配电箱。

3.2.2 系统边界

本次评价的系统边界从原材料获取阶段到产品处置阶段,涵盖了原辅料获取阶段、原辅料运输阶段、生产阶段、成品运输、产品处置等阶段。砂浆产品

从"摇篮到坟墓"各阶段包含及不包含的过程如表 3.1 所示。系统边界如图 3.1 所示。

阶段类型	包含的过程	未包含的过程
原辅料获取阶段	水泥、粉煤灰、砂、水等获取	包装材料获取
原辅料运输阶段	水泥、粉煤灰、砂、水等运输	包装材料运输
生产阶段	砂浆产区生产运输	/
成品运输	柴油运输	/

表 3.1 各阶段包含的过程

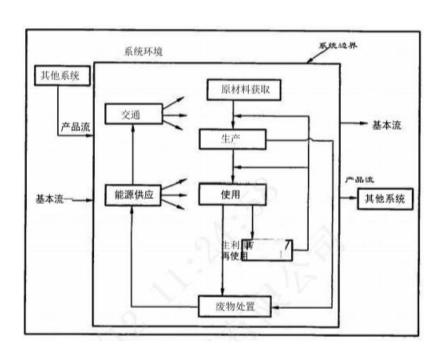


图 3.2: 产品系统边界示意图

3.2.3 分配原则

许多流程通常不只一个功能或输出,流程的环境负荷需要分配到不同的功能和输出中,当前有不同的方式来完成分配,主要有: (1)避免分配; (2)扩大系统边界; (3)以物理因果关系为基准分配环境负荷; (4)使用社会经济学分配基准。

由于各车间用电量未按产品及工序分开统计,因此本评价根据实际情况采用以产品产量等物理因果关系为基准来进行分配。

3.2.4 取舍准则

此次评价采用的取舍规则具体如下:

- (1)基于产品投入的比例:舍去质量或能量投入小于1%的产品/能量投入,但总的舍去产品投入比例不超过5%。但是对于质量虽小,但生命周期环境影响大的物质,则不可以舍弃,例如黄金、白银等。
- (2)基于环境影响的比重:以类似投入估算,排除实际影响较小的原料。 对于任何类别影响,如果相同影响在一个过程/活动的总和小于 1%,则此过程可从系统边界中舍去。
 - (3) 忽略生产设备、厂房、生活设施等。

3.2.5 相关假设和限制

在生命周期评价过程中,会出现数据缺失或情景多样化的情况,生命周期 评价执行者需要明确相关假设和限制。

本报告所有原辅材料和能源等消耗都关联了上游数据,部分消耗的上游数据采用近似替代的方式处理。

3.2.6 影响类型和评价方法

基于评价目标的定义,本次评价只选择了全球变暖这一种影响类型,并对产品全生命周期的全球变暖潜值(GWP)进行了分析,因为 GWP 是用来量化产品碳足迹的环境影响指标。

评价过程中统计了各种温室气体,本次核查主要包括二氧化碳(CO_2)。 并且采用了 IPCC 第五次评估报告(2021 年)提出的方法来计算产品全生产周期的 GWP 值。该方法基于 100 年时间范围内其他温室气体与二氧化碳相比得到的相对辐射影响值,即特征化因子,此因子用来将其他温室气体的排放量转化为 CO_2 当量(CO_2 eq)。

3.2.7 数据来源

本评价过程中使用到的数据来源于企业的台账,记账凭证,供应商资质信息等。本次评价选用的数据在国内外 LCA 研究中被高度认可和广泛应用。

3.2.8 数据质量要求

为满足数据质量要求,在本评价中主要考虑了以下几个方面:

数据完整性: 依据取舍原则。

数据准确性:实景数据的可靠性及分配原则的合理性。

数据代表性: 生产商、技术、地域以及时间上的代表性。

模型一致性: 采用的方法和系统边界一致性的程度。

为了满足上述要求,并确保计算结果的可靠性,在评价过程中优先选择来自生产商和供应商直接提供的初级数据,以及企业自身统计的初级数据。本评价在进行了企业现场数据的调查、收集和整理工作。当初级数据不可得时,尽量选择代表区域平均和特定技术条吨下的次级数据,次级数据大部分选择来自相关行业企业温室气体核算方法与报告指南的缺省值;当目前数据库中没有完全一致的次级数据时,采用近似替代的方式选择相近的数据。

数据库的数据经过严格审查,并广泛应用于国内国际上的 LCA 研究。各个数据集和数据质量将在第 4 章对每个过程介绍时详细说明。

备注: 初级数据和次级数据界定

初级数据:通过直接测量或基于直接测量计算得到的过程\或活动的量化值。 注释 1;原始数据不一定来自所研究的产品系统(3.1.3.2),因为原始数据可能与研究的不同但可比较的产品系统相关。注释 2:原始数据可包括温室气体排放因子 (3.1.2.7)和/或温室气体活动数据(定义见 ISO14064-1:2006,2.11)

次级数据:不符合原始数据(3.1.6.1)要求的数据。注释 1:次级数据可包括数据库和出版文献的数据、国家数据库中的默认排放因子、计算数据估计或其他经主管当局审定的代表性数据。

注释 2:次级数据可包括从代理进程或估计中获得的数据。

4数据收集

4.1 数据收集说明

根据标准的要求,三信国际检测认证有限公司组建了碳足迹评价工作组,对砂浆产品的碳足迹进行了调研。

工作组对产品碳足迹的数据收集工作分为前期准备、确定工作方案和范围、现场走访、查阅文件、后期沟通等过程。前期准备及现场走访主要是了解产品基本情况、生产工艺流程及原材料供应商等信息,并调研和收集部分原始数据。收集的数据主要包括企业的生产报表、财务数据等,以保证数据的完整性和准确性。查阅文件及后期反复沟通以排除理解偏差造成的结果不准确。本次评价的数据统计周期为 2024 年 07 月 01 日-2025 年 6 月 30 日。数据代表了砂浆的平均生产水平。

产品碳足迹的数据收集需要考虑活动水平数据、排放因子数据和全球增温潜势(GWP)。活动水平数据是指产品在生命周期中的所有量化数据(包括物质的输入、输出,能源使用,交通等方面)。排放因子数据是指单位活动水平数据排放的温室气体数量。利用排放因子数据,可以将活动水平数据转化为温室气体排放量,如:电力排放因子数据来源:2024年12月20日,生态环境部、国家统计局关于发布2022年电力二氧化碳排放因子的公告,后续将及时更新和定期发布电力二氧化碳排放因子。

活动水平数据来自企业工作人员收集提供,对收集到的数据工作组通过企业自身的生产报表和财务数据进行了审核。排放因子数据来自相关行业企业温室气体核算方法与报告指南的缺省值查询。

4.2 活动水平数据

生产砂浆产品全生命周期各阶段的具体活动水平数据如下表 4.2-1:

生命周期阶段	活动数据	排放因子	温室气体量 (kgCO ₂ e/t)
--------	------	------	----------------------------------

		电力	161.433kwh	0. 5366	86. 6250
原	原材料获取		1	1	/
			0.89kwh	0. 5366	0. 4776
	生产	柴油	0.0001t	0. 0726	0. 4174
			1	1	/
	原材料运输	柴油	1.1664t	0. 0726	3. 6686
运输/ 交付	成品运输	柴油	0.6615t	0. 0726	2. 0805
	仓储		1	1	/
使用			1	/	/
	生命末期	电力	0 kwh	0. 5366	0

表 4.2-1 砂浆生命周期碳排放清单说明

4.3 排放因子数据

砂浆产品生命周期各阶段"摇篮到坟墓"的具体排放因子数据来源,具体为排放因子数据来自《工业其他行业企业温室气体核算方法与报告指南(试行)》、《中国水泥生产企业温室气体排放核算方法与报告指南(试行)》、《陆上交通运输企业温室气体核算方法与报告指南(试行)》的缺省值查询。电力排放因子数据来源:2024年12月20日,生态环境部、国家统计局关于发布2022年电力二氧化碳排放因子的公告,为落实《关于加快建立统一规范的碳排放统计核算体系实施方案》相关要求,生态环境部、国家统计局组织计算了2022年全国、区域和省级电力平均二氧化碳排放因子,全国电力平均二氧化碳排放因子(不包括市场化交易的非化石能源电量),以及全国化石能源电力二氧化碳排放因子,供核算电力消费的二氧化碳排放量时参考使用。2022年电力二氧化碳排放因子为0.5366kgCO2/kWh。后续将及时更新和定期发布电力二氧化碳排放因子。

5碳足迹计算

5.1 计算方法

产品碳足迹是计算整个产品全生命周期中各阶段所有活动水平、排放因子 之和。计算公式如下:

E: 产品碳足迹,单位为二氧化碳当量/吨(tCO2e/t)或千克二氧化碳当量(kgCO2e);

E 原材料获取: 原材料获取阶段的碳足迹,单位为二氧化碳当量/吨(tCO_2e/t)或千克二氧化碳当量 ($kgCO_2e$);

E 原材料运输:原材料运输环节产生的碳排放总量,单位为二氧化碳当量/吨(tCO_2e/t)或千克二氧化碳当量($keCO_2e$):

E 产品生产: 生产加工和装配阶段的碳足迹,单位为二氧化碳当量/吨(tCO_2e/t)或千克二氧化碳当量 ($kgCO_2e$);

E 产品运输:运输阶段的碳足迹,包括现场组立过程,单位为二氧化碳当量/吨 (tCO_2e/t)或千克二氧化碳当量 ($kgCO_2e$);

E 产品处置:使用处置阶段的碳足迹,包括现场使用年限周期内排放、报废处置过程,单位为二氧化碳当量/吨 (tCO_2e/t)或千克二氧化碳当量 ($kgCO_2e$);

5.2 计算结果

5.2.1 冠县恒泰建设有限公司生产的 1 吨砂浆,从原材料获取到产品处置阶段生命周期碳足迹为 93.27 kgCO₂ eq。 各生命周期阶段的温室气体排放情况如表 5.2-1 和图 5.2-2 所示。

生命周期阶段	碳足迹/(kgCO₂e/t)	百分比/%
原材料获取	86. 6250	92. 88%
运输 (原材料运输)	3. 6686	3. 93%
生产	0.8950	0. 96%

运输(成品交付)	2. 0805	2. 23%
使用	/	/
生命末期(产品处置)	0	0%
总 计	93. 27	100%

表 5.2-1 砂浆产品生命周期各阶段碳排放情况

图 5.2-2 砂浆生命周期阶段碳排放分布图

5.3 不确定性分析

不确定性的主要来源为活动水平数据存在测量误差和统计误差。减少不确定性的方法主要有:

使用准确率较高的活动水平数据;

对每一阶段的数据跟踪监测,提高活动水平数据的准确性。

6 改进建议

6.1 改进建议

根据砂浆产品从原材料获取到产品处置阶段的碳足迹评价结果,在企业可行的条件下,可考虑从以下方面加强碳足迹的管理:

- (1)制定数据缺失、生产活动或报告方法发生变化时的应对措施。若仪表 失灵或核算某项排放源所需的活动水平或排放因子数据缺失,企业应采用适当 的估算方法获得相应时期缺失参数的保守替代数据。
- (2)建立文档管理规范,保存、维护有关温室气体年度报告的文档和数据记录,确保相关文档在第三方核查以及向主管部门汇报时可用。
- (3)建立数据的内部审核和验证程序,通过不同数据源的交叉验证、统计核算期内数据波动情况、与多年历史运行数据的比对等主要逻辑审核关系,确保活动水平数据的完整性和准确性。
 - (4) 产品分类管控, 从原材料到生产过程、成品运输进行控制。

附件

附件 1: 本公司 2024 年度温室气体报告核查组专家名单

2024 年温室气体报告核查组专家名单

姓名	工作单位	中国认证认可协会 温室气体核查员证书号
王丹丹		2023-GHG1-1255944
冯玉茹	三信国际检测认 ——证有限公司	2024-CCAA-GHG1-1300462
		/

上述专家名单,经过本企业确认并同意开展温室气体排放量核查 工作,专家组成员在本公司进行了 2.0 天的数据收集、数据验证、数 据计算和数据核查工作,特此证明。

企业代表(签字):

附件 2: 企业营业执照

附件 3: 能源计量器具配置表

冠县恒泰建设有限公司能源计量器具配置表 序号 能源种类 计量器具类别 精度 数量 运行状态 安装使用地点 是否在检定周期内 备注 电 正常 是 电度表 D级 厂区 1 1 水 水表 是 一级 正常 厂区 1 填写注意点: 主要统计能源相关的 计量器具(电表、水表、天然气表、流量计等)

附件 4: 能源统计表

		冠县恒泰建设有限公司	能耗统计表	
月份	总电 (kwh)	生产用电 (kwh)	生产用柴油(t)	生产用水 (t)
2024年7月	46300	2667. 38	3. 53	461.77
2024年8月	40900	2506. 35	3. 92	488. 13
2024年9月	36668	1278. 25	2.72	353. 24
2024年10月	25921	1660. 17	3. 94	483. 89
2024年11月	45951	7595. 10	6. 39	859. 75
2024年12月	43706	2855. 09	10.73	1420.71
2025年1月	26758	0.00	7. 29	344.00
2025年2月	25392	1118. 42	1.50	184. 50
2025年3月	30560	3553. 37	3. 47	760. 89
2025年4月	23662	2207. 81	3.70	1096. 19
2025年5月	27757	4083.73	3. 34	1298. 93
2025年6月	24557	779. 98	4. 36	965. 33
合计	398, 132. 00	30305. 64	54. 88	8717. 34


填写注意点: 1、仅统计生产过程相关的能源消耗

2、不适用的以"/"代替,,其他能源的补充

附件 5: 高耗能设备统计表

冠县恒泰建设有限公司主要用能设备台账									
序	设备名称	数	总容量或功	主要耗能部	主要耗能部件型号	主要耗能部件数	容量或功率(kw)	能源种类	运行时间
号		量	率 (kw)	件		量(台)			(h)
1	搅拌系统	4	220KW	电机	YE2-250M-4	4	55KW*4	电	8
2	斜皮带	2	74KW	电机	YE3-225S-4	2	37KW*2	电	24
3	水泥螺旋	4	88KW	电机	YE2-180M-4	4	22KW*4	电	8
4	矿粉,煤灰螺旋	4	60KW	电机	YE3-160M-4	4	15KW*4	电	8
5	平皮带	3	22.5KW	电机	YB7. 5-2-500*1000B	3	7.5KW*3	电	8
6	变压器	1	200KVA	电机	S11-M	2	200KVA	电	8
7	空压机	1	11KW	电机	TA-120	1	11KW	电	8
8	空压机	1	11KW	电机	YE3-100M-9	1	11KW	电	8
9	铲车	2	340KW	发动机	WP10HG230E476B	2	170KW*2	柴油	8

自信 诚信 公信

三信国际检测认证有限公司

公司地址: 郑州市高新技术产业开发区莲花街 352 号一号楼 5 层

联系电话: 0371-69127788

公司邮箱: cncsit2015@163.com

公司网站: www.cncsit.cn